
Name:	Punktzahl:	Note:	
KLAUSUR NUMA2 11.07.200			11.07.2002
	en (2 Blätter) Formelsammlung ner (nur Tl 30)		
ZEIT: 75 Minuten	Dieses Aufgaben	Dieses Aufgabenblatt ist mit abzugeben!	

1. Man berechne mit Hilfe der <u>Monte-Carlo-Methode</u> einen Näherungswert des Doppelintegrals

$$\iint_{0.1}^{12} \sqrt{x} \ln y \, dy \, dx$$

Man führe <u>zwei Zyklen</u> aus. Man verwende hierzu die 5-stelligen Zufallszahlen der nebenstehenden Tabelle.

- Man berechne mit Hilfe des Romberg-Verfahrens das Integral ∫ ln x / x dx. Man führe hierzu drei Rombergschritte aus (d.h. bis einschließlich T₂,₂) und rechne mit 5 Stellen hinter dem Komma.
- 3. (a) Unter den Nebenbedingungen

$$-x_1 + 2x_2 \le 2$$

 $x_1 + x_2 \le 4$
 $x_1 \le 3$
 $x_1 \ge 0$ und $x_2 \ge 0$

maximiere man mit der graphischen Methode die Funktion $z = 2x_1 + x_2$.

(b) Unter den Nebenbedingungen

$$x_1 + x_2 \le 14$$

 $4x_1 + 9x_2 \le 81$
 $x_1 \le 11$
 $x_1 \ge 0$ und $x_2 \ge 0$

maximiere man mit der Simplexmethode die Funktion $z = 5x_1 + 3x_2$.

4. Zu dem Randwertproblem

$$u_x + 2u_y = 0$$
, $u(0, y) = 10y$, $u(x, 0) = 2 + x$

bestimme man mit dem <u>Differenzenverfahren</u> einen Näherungswert von u(0.1,0.1) und u(0.1,0.2). Man wähle als Schrittweite h = 0.1 und k = 0.1.

Hinweis: Für die partiellen Ableitungen wähle man die rückwärts genommenen Differenzen.