Klausur: Numerische Mathematik I

Hilfsmittel: 6 DIN-A-4-Seiten, E-Taschenrechner

1. Geben Sie sämtliche Nullstellen des Polynoms

$$y = x^4 - x^3 + x^2 - x$$

an.

- Gegeben sei die Gleichung y = e * sin(x) (x im Bogenmaß gemessen).
 - (a) Wieviel Nullsteller besitzt die Gleichung?
 - (b) Berechnen Sie die kleinste Nullstelle mit dem Newtonverfahren. Rechnen Sie mit drei Stellen hinter dem Komma solange, bis diese sich bei \mathbf{x}_1 nicht mehr ändern.
- 3. Lösen Sie das lineare Gleichungssystem

$$x + 3*y - 2*z = 9$$

 $2*x + 7*y - 6*z = 18$

x + 5*y - 4*z = 13

mit Hilfe des Gauß'schen Eliminationsverfahrens.

- Geben Sie für die Funktion y=e^x im Intervall 1 <≈x <= ³ die lineare Gauß-Approximation an.
- 5. Lösen Sie das Anfangswertproblem

mit Hilfe des Eulersches Polygonzugverfahren für die Schrittweite $h\!=\!0.2$.

6. Gegeben sei das Randwertproblem: y'' + y = 5 y(0) = 0 y(1) = 1(Schrittweite $n = 0 \dots n$

Geben Sie das Gleichungssystem in Matrizenform an, welches das Anfangswertproblem löst (nicht lösen!).

7. b Man beweise: Das Integral $\int\limits_{a}^{b} x^3 \; dx$ wird durch die Simpsonformel für drei Punkte exakt gelöst.